Embedded Security for Connected Systems

MODERATOR:

Michael Hange
Federal Office for Information Security (BSI)

PANELISTS:

Martin Klimke Infineon

Andrew Krehmeyer
Continental

Marc Lindlbauer secunet

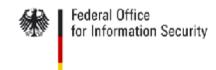
Agenda

Emerging Approach: Embedded Security

C S 1: Security for Smart Grids

CS 2: Hardening Automotive Infotainment Platforms

Q & A



Introduction

IT Security Strategy in Germany

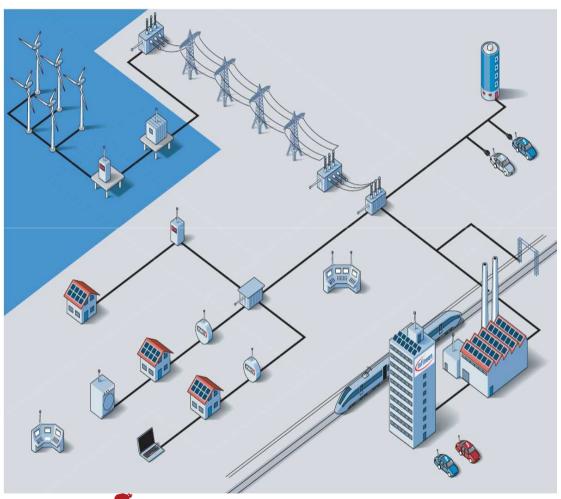
- Critical Infrastructures
- The role of embedded security

Smart Grid

Motivation for the smart grid

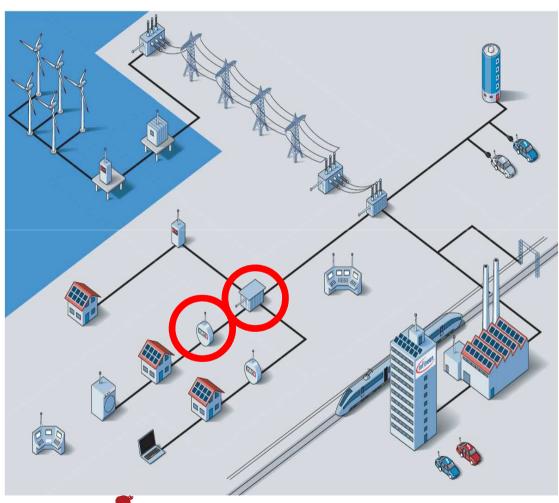
Climate change by the greenhouse effect and the dwindling fossil energy resources demand

- 1. Energy reduction by increased efficiency and better end customer awareness.
- 2. Efficient use of decentrally generated green energy.
- Key Technology to achieve these goals is the "Smart Grid".



Smart Grid need for security

The Smart Grid is critical Infrastructure that assures vital functions of the society


It requires protection against

- -Privacy breaches
- -Fraud and
- -Cyber terrorism

Focus on Smart Meters and Concentrators

- Concentrators and Smart meters are
 - physical unprotected and
 - easily accessible.
- require tamperproof security and
- should be security certified

Security Controllers provide protection in these devices by

- a tamper proof execution environment
- tamper proof data storage
- secure manufacturing processes
- and security certifications

Summary

1 The smart grid is a critical infrastructure that is needs protection

2 Security must be built in from day one

Certified Security Controller provide a solid foundation for smart meter security

4 Governments must act now and mandate security certifications

Transformation of Consumer Electronics in the Connected Vehicle

Always On Connections Inside the Car

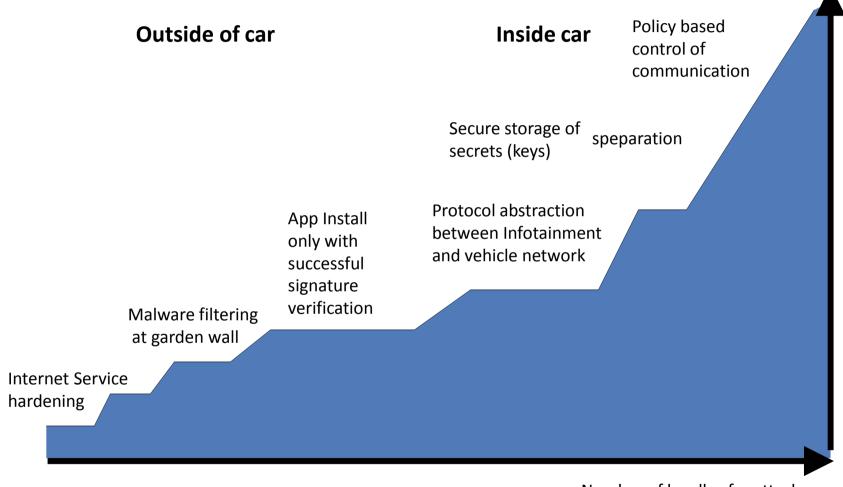
Designing Safe & Easy to Use Human Machine Interfaces

We Design Systems To Simplify Your Drive

Change the profile of your car at the touch of a button:

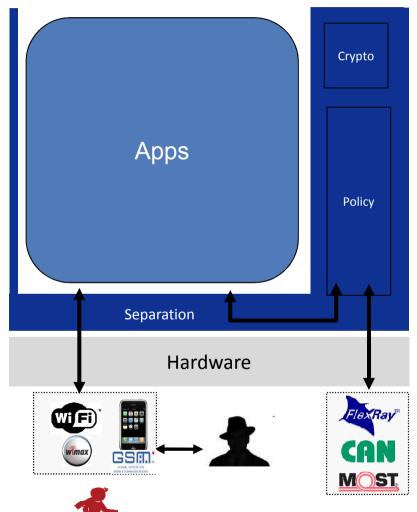
- Eco
- Sport
- Comfort

Other profiles are also Possible.



Security Architecture for Infotainment Systems in Cars

Defense in Depth – Selected Features


Combined efforts to attack vehicle network

Number of hurdles for attackers To reach car systems

Security Architecture

Separtion provides runtime environment for App containment

Policy forwards information after compliance is confirmed

Active corrective Measures

If policy violation is detected

Corrective measures independent from Infotainment system

Crypto authenticates Apps and services

Secunet ACU - Application Control Unit

How to roll out such a Security Architecture

Rollout of Connected Vehicles

- Auto connectivity forces the creation of a new generation of apps
- Safety is always the top priority
- Vehicles systems must be highly reliable
- Infotainment functions must be segregated from core vehicle systems
- Qualify information that has to travel from infotainment to vehicle systems
- Setup policy to control this information flow, which is independent from apps

Visit the German pavilion: Booths 1344 & 1350

secunet

Thank You!

