

TeleTrusT-EBCA "PKI-Workshop" 2019

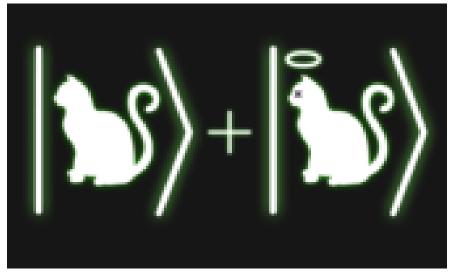
Bundesverband IT-Sicherheit e.V. (TeleTrusT)

Berlin, 18.06.2019

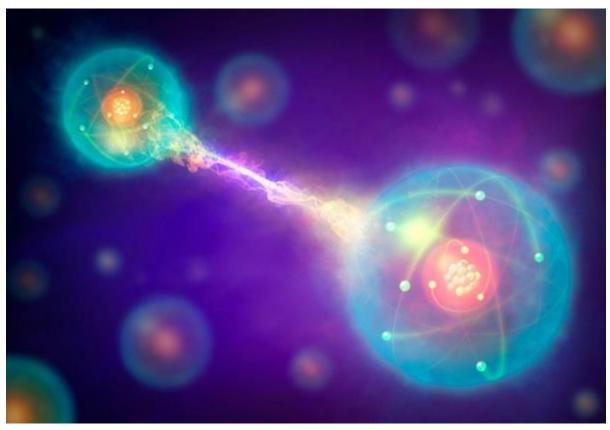
Real World Post Quantum Cryptography in Public Key Infrastructures Stathis Deligeorgopoulos, MTG AG

- MTG, which was founded in 1995, is a high tech software company based in the Rhein-Main region (Darmstadt, Germany) – the Germany IT security cluster.
- MTG is a leading expert for encryption technologies in Germany. MTG's IT security solutions effectively secure critical infrastructures and the Internet of Things (IoT).
- MTG offers security products and services, such as PKI, Key Management System, and HSM integration with best practice traditional and Post-Quantum Cryptography.

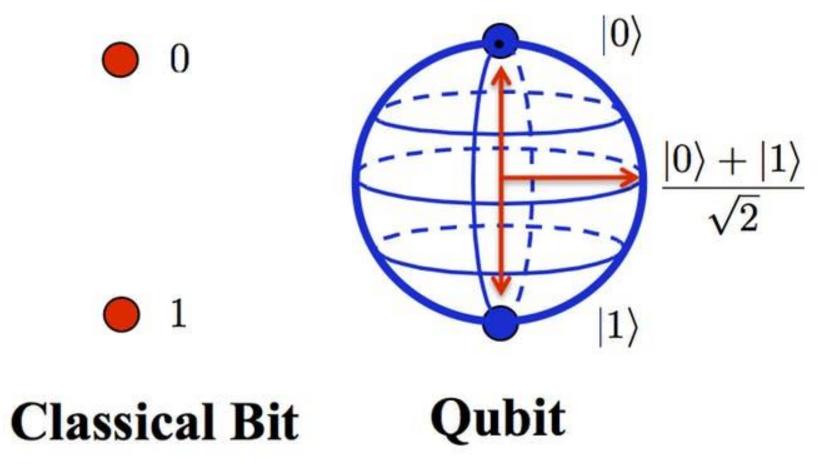
Integrate Post-Quantum Cryptography now!


Schrödingers Cat

http://www.einfachtierisch.de

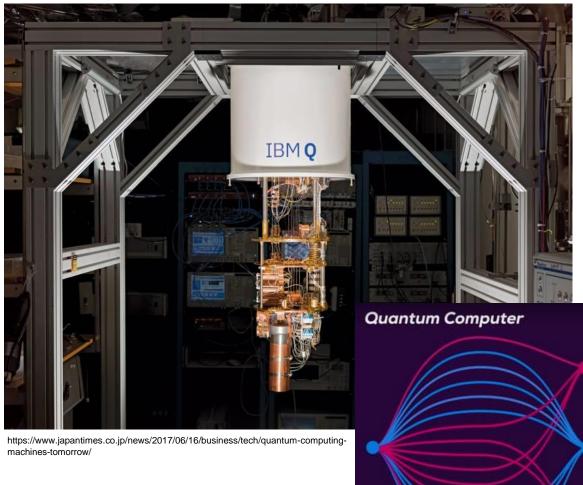

Quantum Superposition

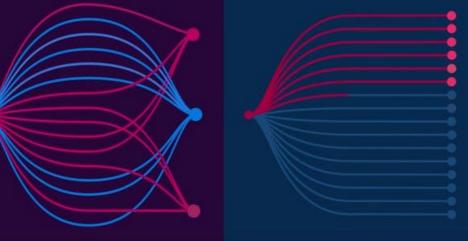
https://brilliant.org/courses/quantum-computing/



Quantum Entanglement

http://www.astronomy.com/news/2018/08/distant-quasars-confirm-quantum-entanglement


Qubits


https://www.inverse.com/article/38860-quantum-computers-are-almost-here

- A quantum bit (qubit) can exist in multiple states simultaneously!
- The number of states potentially grows with the number of qubits (2^N, N = number of Qubits)
- Example: A system with 16 qubits can be in $2^{16} = 65.536$ states at once

Quantum Computers

Computer

https://www.inverse.com/article/38860-quantum-computers-are-almost-here

Key Driver for Quantum Computing

Pictures: Unsplash

GOVERNMENT e.g. Support deep cryptoanalysis of critical data

PHARMACEUTICAL e.g. Develop new drugs and treatments

MANUFACTURING & INDUSTRIAL

e.g. Develop new materials and processes

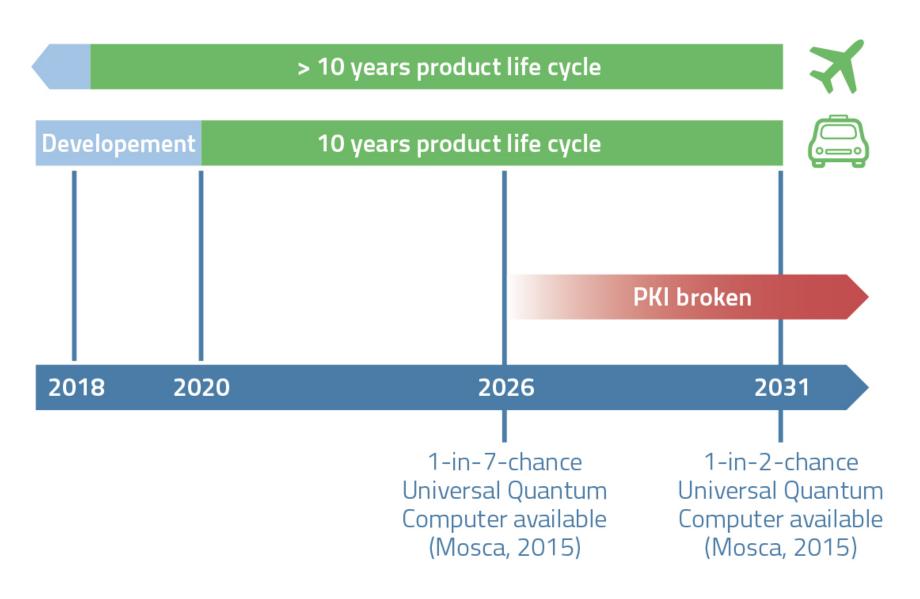
TELECOMMUNICATIONS e.g. Enable secure communications across networks

TRAVEL & TRANSPORTATION e.g. Design new vehicles and transport systems

FINANCIAL SERVICES e.g. Predict market trends and risks

https://www.ibm.com/thought-leadership/technology-market-research/quantum-computing-report.html

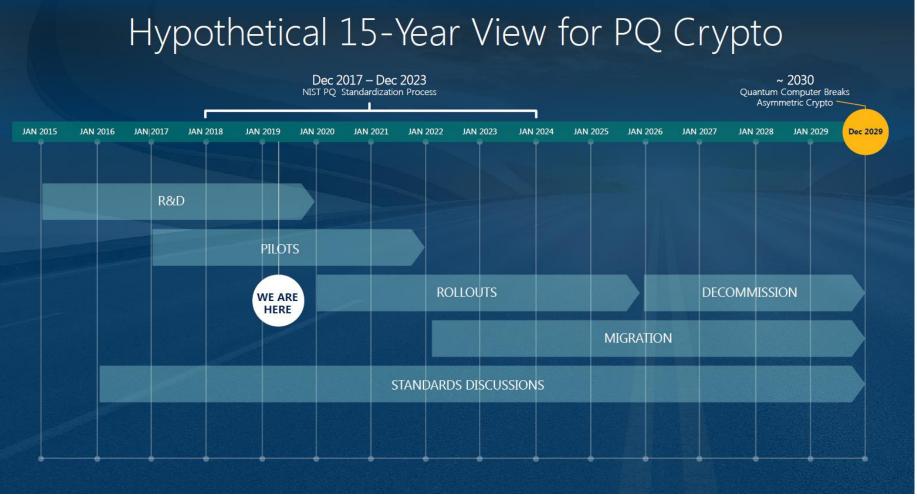
Effects of quantum computers on today's cryptography


Туре	Algorithm	Key Strength Classic (bits)	Key Strength Quantum (bits)	Quantum Attack		
Asymmetric	RSA 2048	112	0			
	RSA 3072	128		Shor's Algorithm		
	ECC256	128				
	ECC 521	256				
Symmetric	AES128	128	64	Grover's		
	AES 256	256	128	Algorithm		

Resource Estimates for Shor's Algorithm

Algorithm	#Qubits				
RSA 1024	2050				
RSA 2048	4098				
ECC 256	2330				
ECC 521	4719				

Quelle: Roetteler, Martin et al. "Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms." ASIACRYPT (2017).


MTG

- NIST Post-Quantum Standardization Project
- Goal: find algorithms based on different mathematical problems that are not vulnerable to known quantum attacks
- Started on Nov 30, 2017 \rightarrow finish in 2023
- ~ 70 submissions from around the world
- Primitives used:
 - code-based
 - lattice-based
 - hash-based
 - Multivariate
 - super singular elliptic-curve isogenies
- NIST & crypto community now engaged in cryptanalysis
- NIST expected to pick multiple "winning" algorithms
- Current Status: Round 2
 - 17 key encipherment (encryption) algorithms
 - 9 digital signature algorithms

IVI I G

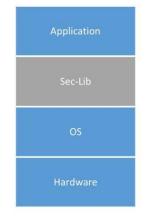
MTG

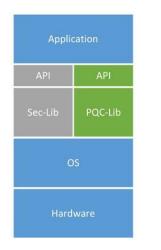
https://hsm.utimaco.com/wp-content/uploads/2019/05/20190516-Utimaco-webinar-Post-Quantum-Cryptography_The-Perspective-of-Brian-LaMacchia_Microsoft-slides.pdf

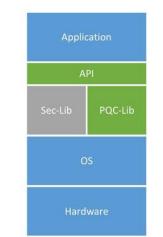
"The ability for an IT system to gracefully and securely exchange crypto primitives, with minimum down-time, no migration periods, and complete visibility on used primitives."

https://cloakable.irdeto.com/2018/06/21/cryptographic-agility/

Why?


- Different PQC algorithms for different use cases
- Algorithms can be proven insecure
- New more effective/secure algorithms can be developed

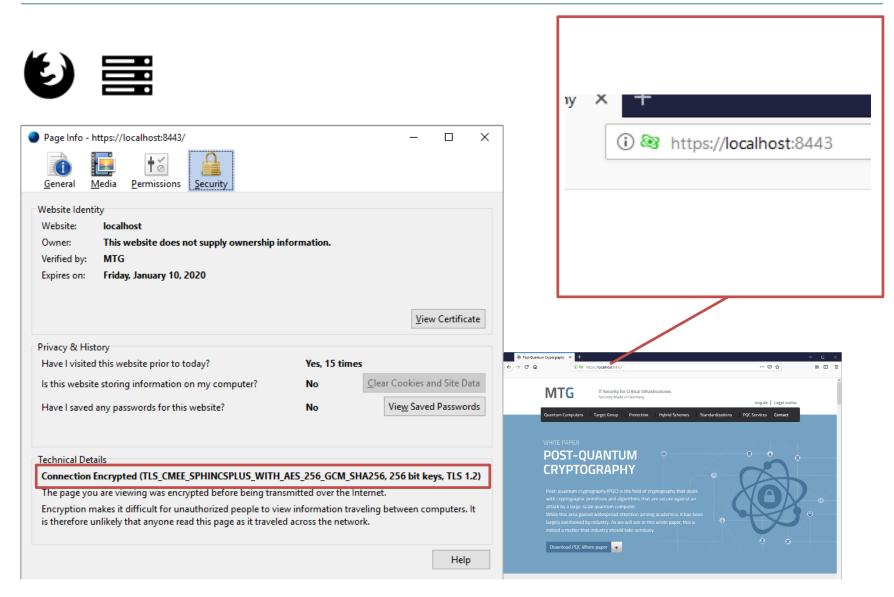

PQC Research Projects


QuantumRISC

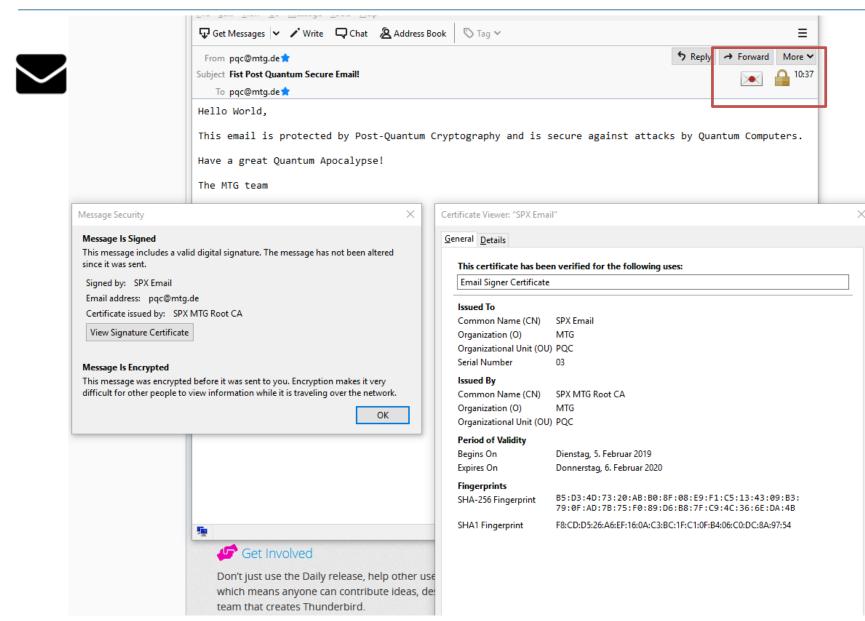
Use-A-PQClib

h_da

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES


Integrate Post-Quantum Cryptography now!

Real World PQC Applications


88			Ce	rtifio	cate						×
General D	etails C	ertificatio	n Pat	h							
Show: <	All>					۷					
Field				Va	lue						^
Signa Signa Issue Valid f Subje Public	from to ct	rithm		DE 31 31 DE	Janu Janu , MT(G, Te Iary 2 Iary 2 G, Te	st, M 2019 2020 st, Te	ini Ro 11:24 11:24 est Ef	4:11		
	Authority Key Identifier KeyID=dc 2c 7b 0b 16 ca 8b f Subject Key Identifier 69 ba 2f 75 5f 35 f0 f5 0d 29 c						~				
83 14 27 54 8d 9f 2d 8b 81 7f 06 96 5e be		57 6d	26 94 5e f2 a0 79	6a a8 d3 4b 67 a0	00 30 9e 97 45 24 55 55	64 50 3a 0f 95 6c	91 e9	Б8 0Ъ с8	ea f1 23 3b 84	5f f5 67 71	^
4e 68	d3 8e	26 3c		22 dit Pr	3a oper	d6 ties		d9 Co	a6 opyto	7c File	
										0	к

- Classic McEliece Public Key
- Sphincs Plus Signature
- No standardized OIDs
- No standardized ASN1 Structures
- Most applications cannot handle:
 - Large key sizes (1,4 MB)
 - Large signature sizes (50 KB)

- No standardized PQC Algorithms
- No standardized encoding for keys and algorithm parameters
- Large key sizes (1,4 MB)
- Large signature sizes (50 KB)
- Keys and Certificates stored in databases...
- Existing software written with no flexibility in mind
- Restrictions through variable types...
- Communication overhead for large keys and certificates
- The whole system needs to use PQC (Webserver, Web browser, HSM, etc.)
- Many existing tools and solutions decide to wait for standards...

Use Case: PQC Email Client

IVI I (1

> PQC transition must start today!

There are new challenges and requirements!

Most of today's IT infrastructures and systems are able to use PQC!

What role could the European Bridge CA play in the adaptation of PQC?

Contact

Stathis Deligeorgopoulos

sdeligeorgopoulos@mtg.de

+ 49 6151 8000 40